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ExPERIMENTAL RESULTS

The performance of the matching device depends
upon the termination of the filled guide. Two termina-
tion methods were used in obtaining experimental data.
With the ruby- or alumina-filled guides, we used a
termination made from a polyiron-filled waveguide,
which absorbs the power propagating down the wave-
guide. Fig. 4 shows the transition to an alumina-filled
waveguide and the polyiron terraination; the corre-
sponding VSWR is shown in Fig. 5. The rutile-filled
waveguide was more difficult to terminate with an ab-
sorbing material. Polyiron has an insufhciently high di-
electric constant to be well matched to rutile. Titania
with a 20 per cent doping of silicon carbide offers
promise as an absorbing material for titania- and rutile-
filled waveguides and is presently being tested.

For the test data for titania reported here, a second
method of terminating the filled waveguide was used.
In this method, two transitions are used—one to match
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into the filled waveguide, and one to match out to the
air-filled waveguide and then to a standard termination
(see Fig. 6). The titania-filled waveguide is 0.040 in in
the b dimension and 0.090 in in the a dimension. The
VSWR plot for this configuration is shown in Fig. 7.
Since the measured reflected power is from both transi-
tions, the data in Fig. 7 were those calculated for each
transition. Performance data for some typical transi-
tions appear in Table 1.

CONCLUSION

It has been shown that a broad-band RF impedance
match from air-filled to dielectric-filled waveguide is
possible using an abrupt transition with an appropriate
susceptance match. The technique described offers
considerable improvement in performance over more
conventional dielectric taper transitions, and is easier
to fabricate. Immediate application is seen in 1naser
circuits where the waveguide is filled with high dielec-
tric maser material.

Excitation of Plasma Waves in an Unbounded
Homogeneous Plasma by a Line Soutce®

S. R. SESHADRI{,

Summary—The radiation characteristics of a line source of mag-
netic current embedded in a homogeneous electron plasma of in-
finite extent are investigatsd for the case in which a uniform mag-
netic field is impressed externally throughout the medium in the di-
rection of the source. The single-fluid theory of magnetohydrody-
namics is employed. A very simple model is assumed for the plasma.
Under this assumption, it is found that there are two modes of propa-
gation of waves of small amplitude. By examining the behavior of
these modes in the limiting cases of vanishing external magnetic
field or infinite source frequency, they are identifiable as the modified
forms of the usual plasma and optical modes which exist in an iso-
tropic elecfron plasma. The dispersion relations for these two modes
are discussed. The power radiated in each of the two modes is also
evaluated. It is found that the power radiated in the optical mode is
always lower than that due to the line source in free space, whereas
the power radiated in the plasma mode is higher than that value for
certain ranges of the source frequency.

INTRODUCTION
THE STUDY OF the radiation characteristics of

localized electromagnetic sources in an unbounded
ionized gaseous medium, known generally as
plasma, has application to the problem of radio com-
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munication with missiles at the time of their re-entry
into the earth's atmosphere and with space vehicles
passing through the ionosphere and other ionized re-
gions in interplanetary space. In recent years, this sub-
ject has received considerable attention in literature.
Previous investigations of this subject may be con-
veniently grouped into three categories.

In the first category, the plasma is assumed to be in-
compressible so that the presence of the longitudinal
plasma waves is ruled out. Under this assumption,
the plasma reduces to a dielectric medium characterized
by a tensor dielectric constant. In the absence of an
external static magnetic field, the tensor dielectric
constant becomes a scalar. The characteristics of plane
wave propagation in such an anisotropic dielectric
medium have been studied, but without taking into
account the sources which excite these waves. Also,
the radiation characteristics of sources in a plasma
idealized by an anisotropic dielectric medium were in-
vestigated. For example, Arbel® has treated the problem
of radiation from a point source in an incompressible
homogeneous plasma medium of infinite extent.

1 E. Arbel, “Radiation from a Point Source in an Anisotropic
Medium,” Polytechnic Inst. of Brooklyn, N. Y., Res. Rept. No.
PIBMRI-861-60; November, 1960.
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In the second category of papers published on this
subject, the compressibility of the medium is taken into
account and consequently the presence of the longi-
tudinal plasma waves as well as that of the transverse
electromagnetic waves is included. The properties of
plane waves propagating in an unbounded plasma me-
dium without an external magnetic field have been
studied,? but ignoring the presence of any sources. The
longitudinal plasma waves and the transverse electro-
magnetic waves interact with each other on the ap-
plication of an external magnetic field. The plane wave
characteristics of these modified plasma and electro-
magnetic waves have also been examined.?

The third category of papers takes into account both
the compressibility of the medium and the presence of
sources of excitation. Hessel and Shmoys? have treated
the problem of radiation from a point source of electric
current in a homogeneous isotropic plasma. In the case
of an isotropic plasma, that is, in the absence of an
external magnetic field, with the introduction of the so-
called “modified” electric field, the “modified” electro-
magnetic field and the pressure are found to satisfy two
separate wave equations which are coupled only
through the source term. On the application of an ex-
ternal magnetic field, the electromagnetic field and the
pressure cease to satisfy separate and simple wave
equations. Consequently, the problem becomes more
difficult and has not been treated in the literature. In
this paper a simple case of such a problem, namely, the
radiation characteristics of a line source of magnetic
current in a compressible plasma medium of infinite
extent under an applied static magnetic field in the
direction of the source is investigated.

FORMULATION OF THE PROBLEM

Consider a homogeneous electron plasma of infinite
extent. It is desired to examine the radiation charac-
teristics of a line source of magnetic current in this
medium. It is convenient to introduce a right-handed
rectangular coordinate system x, v, and z. In this sys-
tem, the line source is taken to be along the v axis, and
hence, it is given by

Jn = 97 06(x)8(z). (1)

Only the steady-state problem is considered, and the
current source is assumed to have a harmonic time de-
pendence of the form e~#*. The frequency of the source
is assumed to be sufficiently high so that the ions may
be considered stationary. Hence, in this treatment the
plasma medium reduces to that of a gas of electrons
whose motion introduces coupling with the electro-

2 S, 1. Pai, “Wave motions of small amolitude in a fully-ionized
plasma without external magnetic field,” Revs. Mod. Phys., vol. 32,
pp. 882-887; October, 1960.

3 S. 1. Pai, “Wave motions of small amplitude in a fully-ionized
plasma under applied magnetic field,” Phkys. of Fluids, vol. 5, pp.
234-240; February, 1962.

4 A. Hessel and J. Shmoys, “Excitation of Plasma Waves in a
Homogeneous Isotropic Plasma by a Dipole,” Polytechnic Inst. of
Brooklyn, N. Y., Memo. 63, PIBMRI-921-61; July, 1961.
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magnetic field. The amplitude of all the excited waves is
considered to be small, thus justifying the use of a
linearized plasma theory.? The use of the linearized
theory implies that all the field components will have
the same harmonic time dependence as that of the
source, namely, e** which may, therefore, be con-
veniently suppressed. The collisions between electrons
and other particles are neglected. It is further assumed
that the drift velocity of electrons is zero so that the
plasma as whole may be considered as stationary. A
uniform magnetic field B, is assumed to be impressed
externally throughout the plasma region in the y direc-
tion which is parallel to that of the source.

Let NV, be the average number density, ¢ the pressure
deviation from the mean, and v the velocity of the
electrons. Let E and H be the alternating electric and
magnetic fields. It is to be noted that v, E and H are
small perturbations. The linearized time-harmonic hy-
drodynamic equation of motion for the electrons is

—iwmNw = Noe(E + va9By) — Vp (2)

where e is the charge and m is the mass of an electron.
The equation of continuity after being linearized and
combined with the equation of state is given by

a*mNoV-v = jwp (3)

where « is the velocity of sound in the electron gas. In
addition, the electric and the magnetic fields satisfy
the following time-harmonic Maxwell's equations

VX E = iwuH — Jn (4)
\Y X H = — iwéoE + ZV(JEi;, (5)

where up and €, are the permeability and the dielectric
constant of free space.

The source and the geometry of the problem are in-
dependent of the v coordinate and, therefore, all the
field quantities are invariant with respect to the ¥ co-
ordinate. Hence, the ¥ component of the particle
velocity o, is zero. On substituting d/dy=0 in (4) and
(5), it is found that the ‘electromagnetic field is sep-
arable into £ and H modes which are known to be ex-
cited, respectively, by line sources of magnetic and
electric current. Since only a line source of magnetic
current is present, the 2 mode is not excited, and hence,
E,=H,=H,=0. Only a single component of the mag-
netic field, namely H,, is present.

On writing (2) in component form and noting that
vy, =E,=0, two simultaneous equations in v, and v,
are obtained in terms of £, E., dp/dx and dp/dz. The
result of the solution of these equations for v, and v, is

ie e?B 7 d eB d
Uy = Ex+ ° Ez— _‘p'—'”—o_P<6)
wmar wma womNox dx wm?Noa 9z
¢’By ie eB ) 1 3
Uy — — N Ea:+ Ez+ . Z— —p, (7)
wima wma WmiNox 0x  wmNoa 9z

5 L. Oster, “Linearized theory of plasma oscillations,” Reus.
Mod. Phys., vol. 32, pp. 141-168; January, 1960.
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where

and the electron gyromagnetic frequency o, is given by

eB()
- (9)

"

We =

If Maxwell’s second equation (5) is written in com-
ponent form and the expressions (6) and (7) are
substituted, respectively, for v, and v,, a pair of simul-
taneous equations for E, and E. is obtained in terms of
H, and p. When these equations are solved for E, and
E., the following result is obtained:

€1 aHy €9 aHy

weye  Ox

iweoe 0%

_ e — = (10)
Noee 0x  Noee Oz
E, = _ aH”_ e a_[{i
iwege O wepe  Jg
iex dp (e — € 9p
o 2 fam 9 (11)
Noee dx Noee Iz
where
€= €’ — &° (12)
w 2
a=1—— (13)
w2a'
and
Wewp?
6= —— (14)
wia

and w, in (13) and (14) is the plasma frequency and is
given by

N oe?
Wy = - (15)

€ot

If in (6) and (7), E, and E, are replaced by the expres-
sions given in (10) and (11), the following expressions
are obtained for v, and v, in terms of I, and p. After
some simplification, they are

Tew,

foH,

Uy =

Lo 00}

wimegen l ox Noe 93

+6 [1 B <%>] {aHy

9

W meged

1weg 6?
62 Y o€ ()x.
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= ()]

ej1—1| — )

v = o e/ Ao, e ?ﬁ}
wimegex 1 dx Nge 9z

iew, {OHy Lweq ap}

9z Noe oxf

(17)

w megece

The substitution of (16) and (17) in (3) gives the
following result:

B < s 82>H< )
— J(x, 2
’ dx? 0z? ¢

|‘ 0?2 92 wlae

-+ +—
ax?  9z? \ <1 wp2>
o —
L w?

In a similar way, and after some manipulation, the use
of (10) and (11) in (4) leads to the following equation:

62 62 w2[.£0€0€
— 4 + — i‘H x, %)
[aﬁ 9zt @ oS
92 a*

+7\*E[375+E§J1’(“‘ )

Tweoe

P(OC, z) = 0. (18)

= Jo8(x)8(z). (19)

€1

Eqgs. (18) and (19) are the coupled differential equa-
tions for H,(x, 2) and p(x, 2z). Once these quantities are
determined, (10, (11), (16), and (17) can be used to
obtain E,, E., v,, and v,. Notice that the so-called elec-
tromagnetic mode given by H,(x, 2) and the plasma
mode given by p(x, 2) are coupled.

Before proceeding to solve the coupled-wave equa-
tions (18) and (19), it is instructive to examine their
behavior in the following three limiting cases: 1) when
the plasma is incompressible, so that p=0; 2) when the
applied magnetic field By becomes zero; and 3) when
the source frequency becomes extremely large. In the
first case, (19) reduces to

0?2 02 w?uo€oe
[— +—+

ox? dz* €1
This wave equation (20) has been obtained and used

previously.t In the second case, (18) and (19) can be
simplified to yield the following equations:

9t 0t W 00,7
|: + +——<1~—~>:|p(x, z) =0 (21a)
dx? 022 a? w?

6 S. R. Seshadri, “Excitation of Surface Waves on a Perfectly-
Conducting Screen Covered with Anisotropic Plasma,” Cruft Lab.,
Harvard Univ., Cambridge, Mass., Tech. Rept. 366; May, 1962.

}Hy(x, g) = — ﬁo—‘ffoa(x)a(:;). (20)

€1
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and

{:32+62+w2<1 w2i|H( )
ox? Jdz? c? _w> 7

- m(l - —)Jo«sma(z) (21b)

where ‘¢=1/+/ue€ is the velocity of electromagnetic
waves in free space. Hence, in the absence of an ex-
ternal magnetic field, the plasma mode given by (21a)
and the electromagnetic mode given by (21b) are un-
coupled. Moreover, any coupling between these modes
can take place only at a boundary, as can be seen from
the expressions for E,, E,, 9, and v, given in (10, (11),
(16), and (17), respectively. Variants of the specialized
and simple equations (21a) and (21b) have been used
previously by Hessel, Marcuvitz, and Shmoys’” who
have studied the coupling between the plasma and the
electromagnetic modes at a vacuum-plasma interface.
In the third case of an infinitely large source frequency,
the coupled equations again become uncoupled and the
following two separate equations are obtained:

a? 62 Z
— c.og) =0 22
[ 2+ 2+ S pma-0

and

62 62 2
[ + + —w—J H,(x,2) = — iwesJod(x)8(%). (22b)
dx? a9z? c?

As in the previous case, the two modes are coupled
only at the boundary. The behavior of the modes in the
limiting cases of vanishing external magnetic field and
infinite source frequency will be used later and identified
as modified forms of the separate plasma and electro-
magnetic modes of the isotropic plasma.

FOURIER-TRANSFORM SOLUTION OF {18) AND (19)

It is proposed to solve (18) and (19) for H,(x, z) and
p(x, 2) by the method of Fourier transform. For this
purpose, let the following Fourier transforms be defined:

T, n) = f f H (e, e bodndzs (23)

Hy(.’X‘, 2) -

ehr o I B ey

6 n) = f f p(x, Bt dxds 25)

and

Pl 2) = — f f 36, et drdn. (26)

(2m)®

7 A. Hessel, N. Marcuvitz, and J. Shmoys, “Scattering and gulded
waves at an interface between air and a compressible plasma,” IRE
TRrRANS. ON ANTENNAS AND PROPAGATION, vol. AP-10, pp. 48-54;
January, 1962,
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On applying Fourier transforms to (18) and (19) with
respect to x and gz, it follows that

(2)

h—*z— Bn(§2 -+ ﬂz)ﬁy(.c "7)

+ [—¢ =2+ k2P, ) =0 (27)
and
[__ — 5?2 + k. ] g‘y 77)
SO g lpe ) = — 2 g, (29)
Noeey “

where the following short-hand notation has been em-
ployed:

wiae
ka2 = (29)
a*(w? — wp?)
and
w? €
kilf=— —- (30)
62 €1

The solution of (27) and (28) for p(¢, 7) and H,({, 7)

sives
(%)
= w Twege fo
pEm) = ——— By($? + 9% (31)
Wp €1 A
(2]
w
and
— Twege Jo
H (& n) =— @+ — k2 —> (32)
€1 A
where
A=+ =kl 40— k] - B+ )2 (33)
and
1 W, €s
B=— = (34)

In obtaining (33) and (34) from (27) and (28), some
simplification has been effected by the use of (9) and
(15).

The substitution of (32) and (31),
(24) and (26), gives

respectively in

WEHE

H(r.2) (2)216 ff“’(nzﬂLs“—/ez)

.ez(fc+ﬂz)d§'dn (35)
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and

< )
1 w 1wege

X, 2) = By Jo
'b(h Z) (27‘_)2 l:l 3 <2€‘>2i| €1

w0 o0 2 2
f f (_T' + g‘ )6L(§‘x+nz)d§-dn'
¥ — A

For the evaluation of the double integrals, the integra-
tion with respect to # is performed first. In order to
carry out this integration, the singularities of A con-
sidered as a function of 7 are needed. It is possible to
put A in the following form:

(36)

A=0 =80+ — k) + 10— k) (37)
where
kmO2 = [l — ,\/ﬁl_rﬁ; (38)
Fup? = U + U — W (39)
ke 4 k2
U= + R (40)
21 -8
and
W= kok (41)
-1

From (37), it is seen that the integrands of (35) and
(36) have poles at 1= 4 Vknp: — 2 and g = + VEne® — {2
The contour of integration is along the real axis of the
complex 7 plane. If the poles of the integrand are on the
real axis, it can easily be shown that the radiation condi-
tion requires the contour to be indented above the
poles on the negative real axis and below those on the
positive real axis. The integraticn with respect to 9 in
(35) and (36) is easily accomplished by closing the con-
tour in the upper half-plane for 2>0 and in the lower
half-plane for 2<0. The result of such an integration
is the following:

Hl/<x7 Z) = Hme(x, Z) -+ Hymp(x) Z) (42)
where
weee  Jo kro? — ko®
Hym0<x7 Z) = - -
47!'61 (1 - 6) km[]2 - kmp2
® exp i1 +'}%m2—2z
f plize v — el oo
—c0 \/kWLOZ - §‘2
WEgE JO kme - ku2
Hyfﬂp(x: Z) = -
4-77'61 (1 - ,3) kmp2 - ka2
w x E;AQ 5 z‘
f oD {2 ikns Clel g
—w \/kmzfZ - §~2
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and
P(x, Z) = Pmo(xa Z) + Pmp(% Z) (45)
where
pmﬂ(x; 2) = Zm[]HymO(x; Z) (46&)
Dun(%, ) = ZppHymp(2, 2) (46b)
and
:B B
T = —2 20 : (472)
w? — wp? kmo? — k2
°B Bl
Zpp = — 2 L. (47b)
w? — wp? kny? — R

The subscripts m0 and mp in (38), (39), and (42)—(47)
are used to indicate modified optical and modified
plasma modes, respectively. It has been stated before
that the small amplitude waves which separate out
naturally as plasma and optical modes, interact with
each other on the application of an external magnetic
field. However, they can be identified as modified
plasma and optical modes from an examination of
their behavior in the limiting cases of vanishing ex-
ternal magnetic field and infinite source frequency.
When there is no applied magnetic field, (34), together
with (9) and (14), gives 3=0. Hence, from (38)—(41), it
is clear that

kmO = keO; kmp == kai) (48)

where k., and k,, are, respectively, the values of &, and
k. in the absence of the external magnetic field. It fol-
lows from (29) and (30), after use of (8) and (12)—(14)

that
0)2 2 2 2
<1 - i”i) bt = <1 - 2) (49)
c? w? a? w?

After comparison with (21a) and (21b), it becomes ob-
vious that k. and k.., reduce, respectively, to the wave
numbers of optical and plasma modes in the limiting
case of zero magnetic field. Hence, k.0 and k.., may be
identified for convenience as the wave numbers corre-
sponding to modified optical and plasma modes, re-
spectively. It is to be noted, however, that in an un-
bounded plasma the plasma mode is not excited in the
absence of an external magnetic field. In that case,
since Bo=0 and ku, =k, =Fkao, it follows from (44), (46),
and (47) that Hymp=Pmo=Pmp=0. The same result also
follows from (21a) and (21b) directly. Since there is no
source term in the wave equation (21a) for pressure,
and since there is no boundary to couple p(x, z) with
H,(x, 2), it follows that p(x, 2) =0 in the absence of an
external magnetic field.

The identification of modified optical and modified
plasma modes is also possible {rom an examination of
the behavior of the corresponding wave numbers in the
limit of infinite frequency. The use of (8), and (12)-(14)
together with (29) and (30) shows that in the limit as w
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tends to infinity, k.=w/c and k, =w/a. Also, since 8=0
in this limit, it {ollows from (38)—(41) that kmo=w/c
and kn,=w/a. Since in the limit of infinite frequency
kmo and k,, become, respectively, equal to the wave
numbers of the transverse optical and longitudinal
plasma waves in the plasma without electronic effects,
kmo and k,, may be called modified optical and plasma
modes, respectively. The examination of (44), (46), and
(47) shows that Hyn,(x, 2) = Pup(x, 2) = pmo(x, 2) =0 and
hence, the amplitude of the modified plasma mode also
vanishes in the limit of infinite frequency.

It has been shown that there are two modes of wave
propagation which have been called modified optical
and plasma modes. The modified optical mode has asso-
ciated pressure variations and the modified plasma
mode has associated with it a transverse component of
the magnetic field. These modes in the limiting cases of
zero external magnetic field and infinite source {re-
quency reduce to the usual optical mode and the plasma
mode with no associated component of the magnetic
field.

For completing the determination of H,(x, ) and
p(x, 2), the integrations with respect to { remain to be
carried out. It is seen that the integral in (43) has
branch points at { = & ke and those in (44) at { = 4 kpp.
The contour of integration in all the cases is along the
real axis of the { plane. The branch-cuts in the { plane
have to be chosen to fulfill the radiation condition
which requires an outward flow of power from the
source at large distances. The contour for the integral
in (43) is indented above the singularity {= — k.o and
below the singularity {=~%m. The branch-cuts at
= —Fkmo and { =k, are taken parallel to the imaginary
axis, respectively in the lower and the upper half-planes.
Similarly, the contour for the integral in (44) is in-
dented above the singularity {= —k,, and below the
singularity ¢ =~k The branch-cuts at ¢{= Fk,, are
also chosen in the same manner as in the previous case.
The integrals [(43) and (44)] are easily evaluated and
the following result obtained:

Byl ) = — 22 0 5o R ol eg] (50)
molX, 8) = — —— m
o de (1= B) huo — ka2~
WeEQE ]n kmp2 - ka2

H (e, 2) = HyWVik, 51

omp(%, 2) by (1= B) Bua? — hony? 0 [ pP] (51)
where the polar coordinates defined by

x = p cos 6 z = psin 6, (52)

are introduced. The choice of the branch-cuts in the
evaluation of the integrals [(43) and (44)] ensures
outward traveling phase fronts. But this condition does
not necessarily imply outward flow of power. Therefore,
it remains to be verified that the present choice of
branch-cuts does indeed lead to the fulfillment of the
radiation condition.

Janvary

DisprERrRsioN CURVES

For the evaluation of power, it is necessary to ex-
amine the nature of the dispersion curves w—k,, and
®—Fkmp. It is convenient to normalize w, w,, Ao, and
kmp in the following manner:

\ac v ac
= kmO; Kmp =

Eup. (53)

By using (8), (12)—(14), (29), (30), and (53) in (38)-
(41), it can be shown that

Kmo = [U; — VU2 — Wojti2 (54a)
Knp = (Ui + VU2 — W,]12 (54b)
where
ac ¢
Uy=-—SU =[98~ (1+R)] (55)
wp? 2a
aic?
W1=—4W=Q4—522(2+R2)+1. (56)
Wp

In obtaining (56), a?/c* has been neglected in compari-
son with unity. This is legitimate, since the ratio of the
acoustic to the electromagnetic wave velocities a/c is
of the order of 10~ From (56), it is seen that Wy be-
comes zero at two values of 2, namely ©; and 3, and
these are given by

R2 4
Q=14 —— — 4+ R? (57)
2 4
2 R
932—1+7+ — 4+ R? (58)
Also U, becomes zero at 2=, given by
Q2 =14 R2, (59)

From (57), (58), and (59), it is obvious that £; <Q, <Qs.
It is clear that U;$0 according to whether Q<€ and
that W1<0 for 91<Q<Qz and W1>O for O<Q<Q1 and
Q<2< . In the frequency range 0<Q<Q;, W,>0,
and therefore !\/Ul W1| <i U1| Also U2>W, as a
result of the large value of the factor ¢/a in (55). Hence,
U:F+/UZ—TW,; are both real and have the same sign
as U which is negative. Therefore, K, and K,, are
purely imaginary and the two modes are nonpropagat-
ing. In the frequency range O, <Q<€;, W,;<0, and
|V UE=Wi|>| Uil, and therefore, K,, is positive
real and Ko is purely imaginary and this shows that
only the plasma mode propagates in this range of .

In the frequency range (<Q< o, Ug>W; Also
Wi>0 and I VU2— W1| <| Uly Therefore, both
UsFU2— W, are real and of the same sign as Uj.

Because U;>0 in this frequency range, K, and K,
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are both positive real resulting in a pass band for both
the plasma and optical modes.

In Figs. 1, 2, and 3 the dispersicn curves @ — K, and
0 — K., are plotted for three values of R, namely, 0.5,
1, and 5. The ratio /¢ of the electron sound to the
electromagnetic wave velocity is taken to be 10~4 When
R=0, that is, in the absence of an external magnetic
field, both modes are cut off below @=1. With the ap-
plication of an external magnetic field, the cut-off fre-
quency €; of the optical mode increases and that of the
plasma mode {; decreases. The phase velocity of the
modified plasma mode remains approximately at the
value corresponding to that of the electromagnetic wave
and rapidly decreases, in the neighborhood of Q=Q,,
to that of the acoustic wave in the electron gas. The
cut-off frequency €2, of the modified optical mode con-
tinuously increases and that of the modified plasma
mode ), continuously decreases when the external
magnetic field is increased. The frequency band (;—Q))
in which only the modified plasma mode can propagate
is approximately equal to R and hence, increases with
an increase in the external magnetic field.

RaDIATED PowER IN THE OPTICAL AND
THE Prasma MOoODES

It is desired to calculate the time-averaged power
radiated by the line source in the optical and the
plasma modes. For this purpose a generalized Poynting
vector for a compressible plasma must be derived. It is
convenient to start with the following time-dependent
forms of (2)—(5):

mNy o v=Ne(E+vXB) —Vp (60)
ap
a*lmNeyVeow = — — (61)
ot
0H
VXE=—p——Jn (62)
at
0E
VXH: Eo;‘i—p]oev’. (63)
Let
S=EXH- pv. (64)
Then
V-S=HVXE—EVXH-+Vp-v+ pV-v. (653)

On substituting for VXE, VXH, Vp and V-v respec-
tively from (62), (63), (60), and (61) in (65) and noting
that v XB.v=0, it follows that
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The integration of (66) throughout the volume V en-
closed by the surface 4 yields
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1
H,, = ‘“fH(i“, ko)
27

0 N . § e ; 2
fS-fsz—i——fl:ﬂ’Hl2+ﬂlE[2+ﬁl‘1,{2 exp {ifx + ivEn? — ] 5] }ds (71)
4 ot 2 2 2 1
Pmp = —f Pmp(g‘, kmp)
1 \ 2r
+o [ pl|av o
a’mNg - exp {zg‘x + iV eyt — (2[ z| }d; (72)
- 1
= — va]de (67> Um0 = -—fevmo(g" kmO)
27
The term inside the square brackets in (67) gives the e f N R
sum of the densities of magnetic, electric, kinetic, and exp {zg“:c + iV ko ¢ l Zl }dg-' (73)
potential energies, and hence, the second term on the The result is
f [Emp X Hmo* + PmmeO*] -dA
4
1
= f f f [Emp<§17 kmp) X Hmo*(fz, kmo) + p‘mp(g‘l; kmp)Vm0*(§27 kmo)]
(27">2 av i 2
cexp {i(1 — ()2 + i(Vhnp — (° — Vo' — {2) | 5| |- dAdGdS
= f f [Emp(g‘la kmp) X Hmu*(§2; kmO) + pmp(g‘h kmp)Vmﬂ*(g-‘z, kmo)]6(§1 - f?)a[\/kmpz - 5‘12 - ‘\/kﬁmo2 - E;z]dfldg'g
1Y §2
= f [Eun(, bnp) X Hut (€, ko) + o (€5 ) V™ (5 k) [8[V T — €% — Vomo® — £2]d¢ (749
¢

right side of (67) represents the rate of increase of the
total energy inside the volume V. The term on the right-
hand side of (67) is the rate of supply of energy by the
source. The requirement of energy balance immediately
shows that the first term on the left-hand side is the
rate of outward flow of energy through the area ..
Hence the vector S represents the outward power flow
per unit area. In the case of harmonic time dependence,
the outward time-averaged power flow through unit
area is easily seen from (64) to be given by
S = Re 3[E X H* 4 pv*]. (68)

In order to be able to speak of the power radiated
separately in the optical and the plasma modes, it is

necessary to show that the two modes are orthogonal.
This is, that

A

where the integral is taken over a surface enclosing the
source. In order to establish (69), the following Fourier-
transformed expressions for E.,.p,, Huo, Pmp, and vao are
substituted in the integral on the right-hand side of
(69) :

1
E,, = —f Emp(f) krnp)
27

cexp {itx + ivEn? — 7| 2| }d¢ (70)

Since the wave numbers k.o and k,, are always dif-
ferent, it follows that (74) is equal to zero and hence,
the orthogonality relation (69) is established.

If use is made of (52), (10), (11), (16), and (17), and
it is noted that the field components are independent
of the angular variable, it is easily shown that

ea OH, (e1—¢€) 0
p=— 2 laT9 0 (75)
wege  dp Noee dp
iey OH les O
PR (76)
weoe  Op Noee Ip
w2
: o i[l B %] 9
1€ w
v, = — . 2
wimeear  Op weamN g dp
w2
e[l a p:] ol F
W= % We
7}9=——————’———J—~——ﬁ—p- (78)
wmegex dp weaem Ny Ip

The total powers radiated by the line source in the
optical and plasma modes are given by

2m
Pno f Sno* podf
0

= Re Wp[_E()mOHymO* + Pmovpmﬂ*] (79)

27
Pmp=f Sup Ppdf
0

= Re Fp[—EﬁmpH mp T Pmp'v;mm*]- (80)
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The substitution for H, and p, respectively, from (50),
(51), and (46a) and (46b) in (76) and (77) gives the
expressions for Ey and v,. The insertion of the expres-
sions for Ee, H,, p, and v, in (79) and (80), respectively,
for the optical and plasma modes and the replacement
of the Hankel function by the first term in its asymptot-
ic expansion, leads to the following result for the power
radiated in the two modes:

~ P €1 €2 W, Rmo?
Py = ———=|——— 2 2 2 b2
w . € € w®— wp? kmi® — ky
— eoJ ot
2
€W Pmo by
+ 2 2 2 2)2
é(w - wp“)(km[)“ - ka“)

€ 1 km02 - ka2 2
X = :l for @ > Qs (81)
260 1= B kno® — ky?
~ Pmp |j €1 €200, kmp
mp h — = - T T T
w € € (JJZ — 2 km 2 kll
— efo’ ( o) bur
€ W Rimpka? }
e (0 — ‘*’pz) (mp? — k.2)?

Fnp® — ko’

€ 1
x [——
2¢1 1 = B kmo® — k?

] for 0> Q1. (82)

Care must be exercised when the radiated power is
evaluated for the values Q=; and Q={. The expres-
sions (81) and (82) are not used for this purpose. It is
shown below that no power is radiated for these two
values . It is easily shown with the help of (34), (13),
(14), (8), and (53) that

(e — e (2~ 9
(@)@~ R —1)

1-8 (83)

where the expressions for €, and Q3 are given respec-
tively in (57) and (58). For =0, and Q=Q;, (1—08)
is seen to be zero from (83), and as a consequence, the
expression (37) for A is no longer valid. With the help
of (29), (30), (12)—(14), (8), and (53), it is seen that

w,? [ — af|[e? — 0]

k.2 = 0 [ Y (84)
e [ — gl — o]
k2 = ? [92 e —T_ (85)
and
.= [92 - 912][92 - 932] . (86)

02[Q2 — R2]

For the values of 2=0; and Q=Q;, from (84), (85), and
(86) it is seen that k,2=k2=¢€=0. These values when
substituted in (27) and (28), immediately give

H,(x,2) = plx,2) =0 for @ = @, and Q5. (87)
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Hence, no power is radiated for the values Q= and
9293.

With the help of (8), (12)~(14), (29), (30), (34), (38)—
(41), (53), and (57)-(59) the expression for P, given in
(81) may be simplified to yield the following result:

PmO
[ Q02 — Q?) R2Q2
CL@e—on@— oy’ (@ - )@ - e@ - 1)

]
'{_ N—1 (-1

2 _ N — 172
X I:@*~l)— L»ﬁl for Q@ > Qs, (88)
202 N —M
where
M=u+ Vit —w (89)
N =u—u:—w (90)
QZ — 1 QZ — 922 2
G ) [ . _8(_#14] on
2002 — )R — 22 (92 — Q%)
and
10-3(Q%2 — 1)2
W = ( ) (92)

(92 . 912)(92 — 93‘):)— ’

The velocity ratio a/c¢ is taken to be equal to 104 In
the range Q;<Q< o, where the optical mode propa-
gates, the second term inside the square brackets of
(91) can be omitted and # is seen to be very large com-
pared to w. Hence, (89) and (90) may be approximated
as follows:

Méu—l—iul—mﬁﬂt
L (@ - e - e )
(@2 — (@2 — 22
7o i i vo.. v
N =y — V12 +m—2!M\
. 107822 — 1) . (01)
2(02 — Q%)

The results in (93) and (94) follow from the fact that «
is positive in the range Qs <Q < «, as can be seen from
(91). From (93) and (94), N is seen to be very much
smaller in comparison to M and hence, can be neglected
in (88). Therefore,

_ 92(92 —_— 922) [(Q? o 1) 1]2
" e an(e— o)l 200 M

_ (Q‘l _ le)(&p — 932)

4092(Q2 — Q9%) (95)
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It is evident from (95) that P, is positive in the range
Q3 <Q < 0 and this ensures a net outward flow of power
from the source. Thus, the radiation condition is satis-
fied, and the choice of the branch-cuts used in the eval-
uvation of the integral in (43) is justified. The power
P,y radiated in the modified optical mode may be calcu-
lated from the expression (95) for the range Q3 <Q2<10
and for different values of the parameter R. The results
are given in a graphical form in Fig. 4. It is seen from
the figure that power radiated in the modified optical
mode at given frequency becomes smaller as the applied
magnetic field is increased. Also, at a given external
magnetic field, the power in this mode rapidly increases
from zero as the frequency is increased from the cut-off
frequency € and reaches an asymptotic value which is
the same as when there is no external magnetic field.

025

020+

015+

005~

Fig. 4—Power in the modified optical mode
for different values of R.

In the same manner as (81), (82) may be simplified
to yield

Prs
Q92 — Q2 R2Q2

- [mz (2 - 0 (@ 2@ — 92)(2 — 1)
vt
—M—1+(M—1)2}

:' for @ > Q.

21 -1
X[MM (96)

2Q8 N - M

Two cases may now be distinguished according to
whether « is positive or negative. For @ not in the neigh-
borhood O, and % positive, (93) and (94) are valid and,
therefore, NV can be neglected in comparison with M.
Hence, it follows from (90), (93) and (96) that

Januvary

R2
40202 — Q)

mp

for 1< Q< Qs and Q< Q< . (97)

It is seen from (91) that # is positive for the ranges
1<Q<Q and 2; <Q < . From (97), it is obvious that
P,,, is negative in the range 1<Q<Q, and positive in
the range 3 <€ < «. When £ is not in the neighborhood
of @ and when u is negative, it is easily derived from

(93) and (94) that

w 1078(Q2 — 1)
M= - = (98)
2 f u] 2(Q2 — Q)
N=—2|ul (@ = D@ — o) (99)

T - a0 — o)

From (98) and (99), it is seen that M is very small
compared to N and 1 and, therefore, it can be neglected
in (96) with the following result:

mp

Q22 — Q%) [(92 -1

= ]2. (100)
(92 — Q.2)(22 — Q) 200 N

The substitution of the expression for N from (99) in
(100) yields

L (@ 0)(2 — )
T 40r(02 — Q)

for &y < @< land @ < Q< Q5 (101)

From (91), it is obvious that « is negative in the ranges
2, <Q2<1 and 2.:<Q<Q; It follows from (101) that
P,,, is positive for the range ©; <Q<1 and negative for
Q, <Q <.

When Q is in the near neighborhood of Q,, the follow-
ing valid approximation for # can be made from (91):

10-5(Q2 — 1)2 w
= —— . (102)
2000 — (2 — Q) 2

Since #<1, it follows from (89) and (90) that

10-4(Q2 — 1)

—N=~/—w= [(92 o) (o — 92)]1/2

M =

. (103)

It is seen that M, N«K1, and hence, for Q in the near
neighborhood of &, (96) may be simplified to yield

_R2104
8 (92 — 2)(Qs2 — Q)]

Pmp

(104)

From (104), P, is seen to be negative even when £ is
near Qs Thus, from (97), (101) and (104), P,, is posi-
tive for £;<Q<1 and @ <Q< o« and negative for
1<Q<s.

Since P,,, is positive for the ranges 0 <Q<1 and
3 <Q < 0, the radiation condition is fulfilled and hence
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Fig. 5—Branch-cuts in the ¢ plane for the modified plasma mode.

the choice of branch-cuts [see Fig. 5(a)] used in the
evaluation of the integral (44) is correct. But for
1<Q< Qs P,, is negative and, therefore, the radiation
condition is not satisfied. In order to satisfy the radia-
tion condition even for 1 <@ <y, it is necessary to use
the branch-cuts as illustrated in Fig. 5(b). The new
choice of branch-cuts will lead to Hy® in (50) and (51)
instead of to Ho™". A negative sign is introduced in
(82) as a result and P,,, turns out to be positive, en-
suring the fulfillment of the radiation condition.

The power radiated in the modified plasma mode
may be evaluated for values of Q ranging from £, to 10,
with the help of (97), (101), and (104) and the results
are plotted in Fig. 6. From the figure it is seen that as Q
increases from €3 the power in the plasma mode rapidly
decreases. On the other hand, the power in the optical
mode rapidly increases and reaches an asymptotic value.
For certain ranges of frequencies, the power in the
modified plasma mode is higher than that radiated by
the line source in free space. Also, there is a peak at
Q=0 and from (104) it can easily be shown that this
peak has its maximum value when w/w,=w/w,=+/2.
With the introduction of dissipative effects in the
plasma, this peak is reduced in magnitude, but never-
theless, the possibility of obtaining more power from
the line source than in free space exists, and this ap-
pears to be significant.

In this investigation the motion of the ions has been
neglected in comparison with that of the electrons and
as a consequence, the interaction between the sound
waves and the plasma oscillations cannot be deter-
mined. This aspect of the problem is under investiga-
tion and will be the subject of a subsequent paper.
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APPENDIX

The {ollowing elegant method of solving the coupled
equations (18) and (19) has been pointed out to the
author by Prof. J. Shmoys of Polytechnic Institute of
Brooklyn, N. Y.

After the substitution of V?p from (18) into (19) and
V2H, from (19) into (18), it follows that

WepE w’ae
(1 ’* ﬂ)VQHy - N f’ _i" kc2Hy
Noeel wp”
a? <1 — ——)
w?
— lwepe
= — Joo(x)6(z)  (105)
€1
ke:’wszo
(1 - 3)V2P + kfp + N N v
w* — wp”

i *B
_ e “’P;‘_ofoa(x)a(z» (106)

6 w?— wp®

The two equations (105) and (106) can be written down
as a single equation for the vector

(})
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in the following manner:

H H
v{ y} + [M][ ”} = [S] (107)
b4 ?
where
— weg€2 wiae
1 ke N 2
¥ geer Wp
M]=—— (1 — % 108
] = (1= 2) | oy
k2w, By Bt
w? — w,?
and
. 1
1WEGE
[S] = — ————T(x)8(z) | wp2Bo (109)
(1~ Be ; .
w? — w,
Introduce the following transformation:
H
[ y}= [T][%:l. (110)
P 12

The substitution of (110) in (107) and the premulti-
plication by the inverse matrix [7°] leads to

Radial-Line Coaxial Filters

B. C. De LOACH,

Summary—Design techniques and a simple empirical formula
for the design of band rejection radial-line coaxial filters are pre-
sented. The appropriateness of these filters for parametric work is
discussed and a particular structure employing these filters to pro-
vide a high performance harmonic filter structure for rectangular
waveguide is presented.

I. INTRODUCTION
SEVERAL requests for “further information” on

radial-line coaxial filters followed the presentation

of a paper! at the 1961 International Solid State

Circuits Conference. This paper is a response to those

requests and is intended to provide a practical design
technique for the realization of these filters.

The design of coaxial filters in the microwave region

above a few gigacycles has not received much attention
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e[V ]+ o V] - s an

\//1:|
12 2

If the matrix [7'] is chosen in such a way as to diag-

onalize [ M], the following two uncoupled wave equa-
tions are obtained:

Enmo® O
LT
302 0 kmp2
where kne® and k,,2 the eigenvalues of [M], are given
by the roots of the equation

(1 — BN — (ka2 + EHN + k22 = 0.

121

%} = [7]s] (112)

(113)

From (113) it is clear that kn¢* and k,,® are respectively
the same as given in (38) and (39). The evaluation of
the inverse matrix [7°|~! vyields the source term on the
left-hand side of (112). Since the source terms are delta
functions, the solutions are obviously Hankel functions.

ACKNOWLEDGMENT

The author wishes to thank Profs. R. W. P. King
and T. T. Wu for help and encouragement with this
research.

in the Microwave Region®

JR.}, MEMBER, IRE

in the past due to the popularity of rectangular wave-
guide for use at these frequencies. Coaxial filters in this
frequency range have become increasingly important of
late, however, due in large part to the advent of multi-
ple frequency circuits employing coaxial lines (often in
conjunction with other types of waveguides) which
have come about through the application of solid-
state art to microwave problems. Parametric amplifiers
and frequency multipliers (or dividers) in particular
have stringent filtering requirements for which coaxial
filters of the type to be discussed in this paper seem
particularly appropriate.

In addition, harmonic band rejection filters in rec-
tangular waveguide structures are difficult to design for
very good fundamental frequency performance and
are often rather poor in their filtering response for one
or more of the several harmonic waveguide modes that
may be present. The problems associated with these
filters can be avoided by accomplishing the filtering in a
coaxial line and employing two rectangular wave-guide-
to-coaxial line transducers.



