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EXPERIMENTAL RESTJLTS

The performance of the matching device depends

upon the termination of the filled guide. Two termina-

tion methods were used in obtaining experimental data.

With the ruby- or alumina-filled guides, we used a

termination made from a polyiron-filled waveguide,

which absorbs the power propagating down the wave-

guide. Fig. 4 shows the transition to an alumina-filled

waveguide and the polyiron termination; the corre-

sponding VSWR is shown in Fig, 5. The rutile-filled

waveguide was more difficult to terminate with an ab-

sorbing material. Polyiron has an insufficiently high di-

electric constant to be well matched to rutile. Titania

with a 20 per cent doping of silicon carbide offers

promise as an absorbing material for titania- and rutile-

filled waveguides and is presently being tested.

For the test data for titania reported here, a second

method of terminating the filled waveguide was used.

In this method, two transitions are used—one to match

into the filled waveguide, and one to match out to, the

air-filled waveguide and then to a standard termination

(see Fig. 6). The titania-filled waveguide is 0.040 in in

the b dimension and 0.090 in in the a dimension. The

VSWR plot for this configuration is shown in Fig. 7.

Since the measured reflected power is from both transi-

tions, the data in Fig. 7 were those calculated for each

transition. Performance data for some typical transi-

tions appear in Table I.

CONCLtTSION

It has been shown that a broad-band RF impedance

match from air-filled to dielectric-filled waveguide is

possible using an abrupt transition with an appropriate

susceptance match. The technique described offers

considerable improvement in performance over more

conventional dielectric taper transitions, and is easier

to fabricate. Immediate application is seen in maser

circuits where the waveguide is filled with high dielec-

tric maser material.
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Summary—The radiation characteristics of a line source of mag-

netic current embedded in a homogeneous electron plasma of in-

fMe extent are investigated for the case in which a uniform mag-

netic field is impressed externally throughout the medkun in the dL

rection of the source. The single-fluid theory of magnetohydrody-

namics is employed. A very simple model is assumed for the plasma.
Under thk assumption, it is found that there are two modes of propa-
gation of waves of small amplitude. By examining the behavior of
these modes in the ltilting cases of vanishing external magnetic
field or intilte source frequency, they are identifiable as the modhled
forms of the usual plasma and optical modes which exist in an iso-

tropic electron plasma. The dkpersion relations for these two modes

are dkcussed. The power radiated in each of the two modes is also

evaluated. It is found that the power radiated in the optical mode is
always lower than that due to the line source in free space, whereas
the power radiated in the plasma mode ifi higher than that value for

certain ranges of the source frequency.

INTRODUCTION

T

HE STUDY OF the radiation characteristics of

localized electromagnetic sources in an unbounded

ionized gaseous medium, known generally as

plasma, has application to the problem of radio com-
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munication with missiles at the time clf their re-entry

into the earth’s atmosphere and with space vehicles

passing through the ionosphere and other ionized re-

gions in interplanetary space. In recent years, this sub-

ject has received considerable attentic)n in literature.

Previous investigations of this subject may be con-

veniently grouped into three categories.

In the first category, the plasma is assumed to be in-

compressible so that the presence of the longitudinal

plasma waves is ruled out. Under this assumption,

the plasma reduces to a dielectric medium characterized

by a tensor dielectric constant. In the absence of an

external static magnetic field, the tensor dielectric

constant becomes a scalar. The characteristics of plane

wave propagation in such an aniso tropic dielectric

medium have been studied, but without taking into

account the sources which excite these waves. Also,

the radiation characteristics of sources in a plasma

idealized by an anisotropic dielectric medium were in-

vestigated. For example, Arbell has treated the problem

of radiation from a point source in an incompressible

homogeneous plasma medium of infinite extent.

1 E. Arbel, “Radiation from a Point Source in an Anisotropic
Medium, ” Polytechnic Inst. of Brooklyn, N. Y., Res. Rept. No.
PIBMRI-861-60; November, 1960.
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In the second category of papers published on this

subject, the compressibility of the medium is taken into

account and consequently the presence of the longi-

tudinal plasma waves as well as that of the transverse

electromagnetic waves is included. The properties of

plane waves propagating in an unbounded plasma me-

dium without an external magnetic field have been

studied,2 but ignoring the presence of any sources. The

longitudinal plasma waves and the transverse electro-

magnetic waves interact with each other on the ap-

plication of an external magnetic field. The plane wave

characteristics of these modified plasma and electro-

magnetic waves have also been examined.3

The third category of papers takes into account both

the compressibility of the medium and the presence of

sources of excitation. Hessel and Shmoys4 have treated

the problem of radiation from a point source of electric

current in a homogeneous isotropic plasma. In the case

of an isotropic plasma, that is, in the absence of an

external magnetic field, with the introduction of the so-

called ‘(modified” electric field, the “modified” electro-

magnetic field and the pressure are found to satisfy two

separate wave equations which are coupled only

through the source term. On the application of an ex-

ternal magnetic field, the electromagnetic field and the

pressure cease to satisfy separate and simple wave

equations. Consequently, the problem becomes more

difficult and has not been treated in the literature. In

this paper a simple case of such a problem, namely, the

radiation characteristics of a line source of magnetic

current in a compressible plasma medium of infinite

extent under an applied static magnetic field in the

direction of the source is investigated.

FORMULATION OF THE PROBLEM

Consider a homogeneous electron plasma of infinite

extent. It is desired to examine the radiation charac-

teristics of a line source of magnetic current in this

medium. It is convenient to introduce a right-handed

rectangular coordinate system x, y, and z. In this sys-

tem, the line source is taken to be along the y axis, and

hence, it is given by

Jm = j~06(X)8(Z) . (1)

Only the steady-state problem is considered, and the

current source is assumed to have a harmonic time de-

pendence of the form e–;” ~. The frequency of the source

is assumed to be sufficiently high so that the ions may

be considered stationary. Hence, in this treatment the

plasma medium reduces to that of a gas of electrons

whose motion introduces coupling with the electro-

2 S. I. Pai, “\\’ave motions of small amolitude in a fully-ionized
plasma without external magnetic field, ” Rem. Mod. Phys., vol. 32,

PP. }~2~88~:10ctober, 1960.
“ “Wave motions of small amplitude in a fully-ionized

plasm; ~nde~ applied magnetic field, ” Phys. of Ft2LidS, T’01. 5, Pp.
234–240; February, 1962.

4 A. Hessel and J. Shmoys, “Excitation of Plasma W’aves in a
Homogeneous Isotropic Plasma by a Dipole, ” Polytechnic Inst. of
Brooklyn, N. Y., Memo. 63, PIBMRI-921-61; July, 1961.

magnetic field. The amplitude of all the excited waves is

considered to be small, thus justifying the use of a

linearized plasma theory. 5 The use of the linearized

theory implies that all the field components will have

the same harmonic time dependence as that of the

source, namely, e–’”t which may, therefore, be con-

veniently suppressed. The collisions between electrons

and other particles are neglected. It is further assumed

that the drift velocity of electrons is zero so that the

plasma as whole may be considered as stationary. A

uniform magnetic field BO is assumed to be impressed

externally throughout the plasma region in the y direc-

tion which is parallel to that of the source.

Let IV,, be the average number density, P the pressure

deviation from the mean, and v the velocity of the

electrons. Let E and H be the alternating electric and

magnetic fields. It is to be noted that v, E and H are

small perturbations. The linearized time-harmonic hy-

drodynamic equation of motion for the electrons is

– icom~Vov = fVoe(E + vxjBo) – VP (2)

where e is the charge and m is the mass of an electron.

The equation of continuity after being linearized and

combined with the equation of state is given by

a2m]VoV. v = imp (3)

where a is the velocity of sound in the electron gas. In

addition, the electric and the magnetic fields satisfy

the following time-harmonic NIaxwell’s equations

VXE=iwpOH– J. (4)

V x H = – iLOeOE + N,,eP, (5)

where KO and COare the permeability and the dielectric

constant of free space.

The source and the geometry of the problem are in-

dependent of the y coordinate and, therefore, all the

field quantities are invariant with respect to the y co-

ordinate. Hence, the y component of the particle

velocity vu is zero. On substituting d/ily = O in (4) and

(5), it is found that the ‘electromagnetic field is sep-

arable into E and H modes which are known to be ex-

cited, respectively, by line sources of magnetic and

electric current. Since only a line source of magnetic

current is present, the H mode is not excited, and hence,

Eu =HZ =HZ = O. Only a single component of the mag-

netic field, namely Hv, is present.

On writing (2) in component form and noting that

VU= EV = O, two simultaneous equations in Vc and v=

are obtained in terms of Ez, E,, dp/ch and dP/dz. The

result of the solution of these equations for VJ and v, is

e2Bo
~a = ~Ez+— EZ–~~–

coma w2m2a amNoa 6’x .2::;.. %)

e2Bo eBo dp i dp
~,z = — —Ez+ ‘E& —–—— (7)

w2m2a coma’ a2m2Noa dx r_omNoa c3z’

5 L. Oster, “Linearized theory of plasma oscillations, ” Revs.
Mod. Pkys., vol. 32, pp. 141-168; January, 1960.
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where

()w, 2
~=f—._

u

and the electron gyromagnetic frequency co. is given by

If iVIaxwell’s second equation (5) is written in com-

ponent form and the expressions (6) and (7) are

substituted, respectively, for u. and v,, a pair of simul-

taneous equations for E& and E. is obtained in terms of

H, and p. When these equations are solved for E% and

E,, the following result is obtained:

where

an d

UCWP2
.62 = ——

da

(13)

(14)

and OJPin (13) and (14) is the plasma frequency and is

given by

(15)

If in (6) and (7), E. and Ez are replaced by the expres-

sions given in (10) and (11), the following expressions

are obtained for ZJXand V. in terms of HV and p. After

some simplification, they are

The substitution of (16) and (17) in (3) gives the

following result:

[l~t+YTB(’(%[ (d%
— $-+$+

( )1P(a’, z) = O. (18)

1
azl –%’

ti~

In a similar way, and after some manipulation, the use

of (10) and (11) in (4) leads to the following equation:

[ 1
; + : + 32N2’ “.($, Z)

-: cl

—— — = Yo(5(”r)ti(z). (19)
cl

Eqs. (18) and (19) are the coupled differential equa-

tions for 11,(x, z) and T(X, z). Once these quantities are

determined, (10, (11), (16), and (17) can be used to

obtain E=, E,, v., and v.. Notice that the so-called elec-

tromagnetic mode given by llU(X, z) and the plasma

mode given by P(K, z) are coupled.

Before proceeding to solve the cou]pled-wave equa-

tions (18) and (19), it is instructive t.o examine their

behavior in the following three limiting cases: 1) when

the plasma is incompressible, so that P = O; 2) when the

applied magnetic field BO becomes zero; and 3) when

the source frequency becomes extremely large. In the

first case, (19) reduces to

This wave equation (20) has been obtained and used

previously.b In the second case, (18) and (19) can be

simplified to yield the following equations:

[ :+;+% -31’(’2)=0‘21’)

s S. R. Seshadri, “Excitation of Surface Waves on a Perfectly-
Conducting Screen Covered with Anisotropic Plasma, ” Cruft Lab.,
Harvard Univ., Cambridge, Mass., Tech. Rept. 366; May, 1962.
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and On applying Fourier transforms

[“;+:+; (I-;)] H,(.,,,
respect to x and z, it follows that

= - ‘U’’(’-’x”(”(” ‘“b) ~1 :;!)21 “’(’2+ ”2)=’(’”)

where c = 1 /~KOeO is the velocity of electromagnetic
u

waves in free space. Hence, in the absence of an ex-

ternal magnetic field, the plasma mode given by (2 la)
+ [–{2 – ~’ +

and the electromagnetic mode given by (21b) are un-
and

coupled. Moreover, any coupling between these modes

can take place only at a boundary, as can be seen from

the expressions for E., Ez, VZ, and v. given in (10, (1 1),
[-f’ - # + k’e’]z.(r, v)

January

to (18) and (19) with

kaz];(t,v) = O (’7)

(16), &d (17), respectively. Variants-of the specialized

and simple equations (21a) and (21b) have been used + R [-.?’ - d]~(f, ~) = - % ~’, (28)

previously by Hessel, Marcuvitz, and Shmoys7 who

have studied the coupling between the plasma and the where the following short-hand notation has been em-
electromagnetic modes at a vacuum-plasma interface.

In the third case of an infinitely large source frequency,
ployed:

the coupled equations again become uncoupled and the uiae

following two separate equations are obtained:
~az – (29)

a~(cll~ — tip’)

[ 1:+~+; t(T~)=o, (Zza) and
.’

and

(30)

As in the previous case, the two modes are coupled

only at the boundary. The behavior of the modes in the (-)’

limiting cases of vanishing external magnetic field and

infinite source frequency will be used later and identified
‘(”q) ‘T1 -;321 ‘“(’2+”’)‘:’; ’31)

as modified forms of the separate plasma and electro-

magnetic modes of the isotropic plasma. and

FOCTRIER-TRANSFORM SOLUTION OF (18) AND (19)
Zu(f, ))) = ~~ ({’ + 7)2 – kaz) : J (32)

It is proposed to solve (18) and (19) for HU(X, z) and cl

P(Z, z) by the method of Fourier transform. For this

purpose, let the following Fourier transforms be defined: ‘here

cam

L(

A = [~’ + q’ – k.’] [{2 + q’ – ka’] – /3(f2 + V2)2 (.33)

Hu(t, q) = H,(*, z)e–’(~’ +“)u’xdz (23)
—. —. and

1 m “=
II,(T, 2) = —

Ss(27r)’ -m -m
IT.({, q)e’f~’+~’~d{dq (24) p=_ 1 ““. (.34)

1–* ’61

ZK, ?) = J mJ’ ‘j(.v, z)e-’(r’+v’)ddz

cd2
(25)

—. —m In obtaining (33) and (34) from (27) and (28), some

and
simplification has been effected by the use of (9) and

(15).
1 “ “=

Ss

.,
The substitution of (32) and (31), respectively in

p(x, ‘) = ~;~ _m -. p(~, q)e’rz+~zd~dv. (26) (24) a,ld (26) gives
,

1 iweoc cc

Ss

w (v’ + .?2– k.’)
7 A. Hessel, N. Marcuvitz, and J. Shmoys, “Scattering and guided Hv(.l-, 2) = —— —

wat,es at an interface between air and a compressible plasma, ” IRE
TRANS. ON ANTENNAS AND PROPAGATION, vol. AP-10, pp. 48-54;

(27r)2 ,, ‘o -~ _@ A

January, 1962. . et (rz+llz)~f~q (35)
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and

(2)2

,(”,,,, . ~F .._x–Bo!wJo
“[’- (3’1 ‘1

u-. m (r)’+ .(-’)
—e ,(C.+v.)dj-dv.
A

(36)
—CC —w

For the evaluation of the double integrals, the integra-

tion with respect to q is performed first. In order to

carry out this integration, the singularities of A con-

sidered as a function of ~ are needed. It is possible to

put A in the following form:

A = (1 – fl)(q’ + f’ – k.m,,’)(qz + f’ – k~o~)

where

k.,(? = lT – VW – P17

k.P2 = U + N@ – W

k.’ + kg’
[r . ———

2(1 – /q

and

(37)

(38)

(39)

(40)

(41)

From (37), it is seen that the integrands of (35) and

(36) have poles at q = ~ <k.~’ –~ and q = f <kmo’ – ~.

The contour of integration is along the real axis of the

complex q plane. If the poles of the integrand are on the

real axis, it can easily be shown that the radiation condi-

tion requires the contour to be indented above the

poles on the negative real axis and below those on the

positive real axis. The integraticln with respect to q in

(35) and (36) is easily accomplished by closing the con-

tour in the upper half-plane for z >0 and in the lower

half-plane for z <O. The result of such an integration

is the following:

H,(1, z) = H,WL”(*,z) + Hwn.($, z) (42)

where

CIJ.60.6 Jo k~(,2 – k.z
Hum(l(x, z) = – —

47w (1 – 6) krno2 – krrw’

———

J
‘exp{ifx +i/kmP2—{2]zi }

——
&Jiq

—— df (44)
—..

and

p(x, z) = pmf)(x, z) + pmp($, z) (45)

where

p.’o(f, z) = zmoH.mo(lj z) (46a)

Pnz,(% z’) = -Z?@,m,(:u, z) (46b)

and

(47a)

The subscripts mO and mp in (38), (39), and (42)-(47)

are used to indicate modified optical and modified

plasma modes, respectively. It has been stated before

that the small amplitude waves which separate out

naturally as plasma and optical modes, interact with

each other on the application of an external magnetic

field. However, they can be identified as modified

plasma and optical modes from an examination of

their behavior in the limiting cases of vanishing ex-

ternal magnetic field and infinite source frequency.

When there is no applied magnetic field, (34), together

with (9) and (14), gives ~ =0. Hence, from (38)–(41), it

is clear that

kn,o = k,o; k~~ = kao (48)

where k,o and k.o are, respectively, the values of k. and

k. in the absence of the external magnetic field. It fol-

lows from (29) and (30), after use of (8) and (12)-(14)

that

After comparison with (21a) and (21 b), it becomes ob-

vious that k~o and k m~ reduce, respectively, to the wave

numbers of optical and plasma modes in the limiting

case of zero magnetic field. Hence, kno and knP may be

identified for convenience as the wave numbers corre-

sponding to modified optical and plasma modes, re-

spectively. It is to be noted, however, that in an un-

bounded plasma the plasma mode is not excited in the

absence of an external magnetic field. In that case,

since Bo = O and knP = k.= kao, it follows from (44), (46),

and (47) that Hu~P = j~o ‘P~, = O. The same result also

follows from (21a) and (21b) directly. Since there is no

source term in the wave equation (21a) for pressure,

and since there is no boundary to couple P(X, z) with

Hv(x, z), it follows that p(x, z) = O in the absence of an

external magnetic field.

The identification of modified optical and modified

plasma modes is also possible from an examination of

the behavior of the corresponding wave numbers in the

limit of infinite frequency. The use of (8), and (12)-(14)

together with (29) and (30) shows that in the limit as o
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tends to infinity, k. =u/c and k,, =w/a. Also, since (?= O

in this limit, it follows from (38)–(41) that k~o =w/c

and k~~ =u/a. Since in the limit of infinite frequency

k~o and k~P become, respectively, equal to the wave

numbers of the transverse optical and longitudinal

plasma waves in the plasma without electronic effects,

k~o and k~fl may be called modified optical and plasma

modes, respectively. The examination of (44), (46), and

(47) shows that HV~p(x, z) =jnz(x, z) =P~o(x, z) = O and

hence, the amplitude of the modified plasma mode also

vanishes in the limit of infinite frequency.

It has been shown that there are two modes of wave

propagation which have been called modified optical

and plasma modes. The modified optical mode has asso-

ciated pressure variations and the modified plasma K m, = [UI + <u,’ – J$”,]m (54b)

mode has associated with it a transverse component of

the magnetic field. These modes in the limiting cases of
where

zero external magnetic field and infinite source fre-

quency reduce to the usual optical mode and the plasma U1=; U=:[W-(I+R2)] (55)

mode with no associated com~onent of the magnetic

field.

For completing the determination of IZv(x, z) and

P(X, z), the integrations with respect to ~ remain to be

carried out. It is seen that the integral in (43) has

branch points at f = + k~o and those in (44) at ~ = ~ knfl.

The contour of integration in all the cases is along the

real axis of the f plane. The branch-cuts in the f plane

have to be chosen to fulfill the radiation condition

which requires an outward flow of power from the

source at large distances. The contour for the integral

in (43) is indented above the singularity ~ = — kno and

below the singularity ~ = k~~. The branch-cuts at

f = –k~o and ~ = km,o are taken parallel to the imaginary

axis, respectively in the lower and the upper half-planes.

Similarly, the contour for the integral in (44) is in-

dented above the singularity ~ = – k., and below the

singularity { = k~o. The branch-cuts at { = T k~p are

also chosen in the same manner as in the previous case.

The integrals [(43) and (44) ] are easily evaluated and

the following result obtained:

where the polar coordinates defined by

X=pcoso; z=psin O, (52)

are introduced. The choice of the branch-cuts in the

evaluation of the integrals [(43) and (44)] ensures

outward traveling phase fronts. But this condition does

not necessarily imply outward flow of power. Therefore,

it remains to be verified that the present choice of

branch-cuts does indeed lead to the fulfillment of the

radiation condition.

DISPERSION CURVES

For the evaluation of power, it is necessary to ex-

amine the nature of the dispersion curves w — k~o and

u — k~P. It is convenient to normalize co, WC, k~o, and

knP in the following manner:

4Z ~ac ~
Q=~; R=~; A’mo=— kmo; Kmv = — mp. (53)

UP ~P UP UP

By using (8), (12)-(14), (29), (30), and (53) in (38)-

(41), it can be shown that

Km(l = [Ul – <U12 – wl]l/2 (54a)

~2c2

W,=- W= Q’-Q’(2+R2) +1. (56)
CL)pk

In obtaining (56), a2/cz has been neglected in compari-

son with unity. This is legitimate, since the ratio of the

acoustic to the electromagnetic wave velocities a/c is

of the order of 10–4. From (56), it is seen that WI be-

comes zero at two values of Q, namely L?l and C&, and

these are given by

(57)

(58)

Also Ul becomes zero at Q = Qz given by

Q2’ = i + R’. (59)

From (57), (58), and (59), it is obvious that QI <Qz <Q.

It is clear that U1 $0 according to whether Q $ Q and

that Wl<Ofor Ql<Q<Qz and Wl>Ofor O< Q< Qand

Q <Q< m. In the frequency range O <Q< fi?l, W1>O,

and therefore I V’ U12— WI I < I U11. Also U12 > W1 as a

result of the large value of the factor c/a in (55). Hence,

U1 T V’ Ulz – WI are both real and have the same sign

as U1 which is negative. Therefore, K~o and K~P are

purely imaginary and the two modes are nonpropagat-

ing. In the frequency range ill < Q <Q, W1 <0, and

I v’U?- WI] >/ UI/ , and therefore, Km, is positive

real and Kno is purely imaginary and this shows that

only the plasma mode propagates in this range of Q.

In the frequency range Q < Q < cc, U12 > WI. AISO

WI> O and I V’U12– WI I < ] UII. Therefore, both

UI T V’ U12– WI are real and of the same sign as U1.

Because UI >0 in this frequency range, Kmo and K~p
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are both positive real resulting in a pass band for both

the plasma and optical modes.

In Figs. 1, 2, and 3 the dispersion curves Q – K~O and

Q –Km, are plotted for three values of R, namely, 0.5,

1, and 5. The ratio a/c of the electron sound to the

electromagnetic wave velocity is taken to be 10–4. When

R = O, that is, in the absence of an external magnetic

field, both modes are cut off below Q =1. With the ap-

plication of an external magnetic field, the cut-off fre-

quency Q of the optical mode incr eases and that of the

plasma mode Q decreases. The phase velocity of the

modified plasma mode remains approximately at the

value corresponding to that of the electromagnetic wave

and rapidly decreases, in the neighborhood of L?= Q,

to that of the acoustic wave in the electron gas. The

cut-off frequency Q3 of the modified optical mode con-

tinuously increases and that of the modified plasma

mode fll, continuously decreases when the external

magnetic field is increased. The frequency band (Q — Ql)

in which only the modified Pkma mode can propagate

is approximately equal to R and hence, increases with

an increase in the external magnetic field.

RADIATED POWER IN THE OPTIGW AND

THE PLASMA MODES

It is desired to calculate the time-averaged power

radiated by the line source in the optical and the

plasma modes. For this purpose a generalized Poynting

vector for a compressible plasma must be derived. It is

convenient to start with the following time-dependent

forms of (2)-(5):

m.~r” ~ v = N“e(E + v X B) – Vp (60)

C3p
azml\ToV. v = — — (61)

dt

13H
VXEZ– FOZ– J. (62)

dE
V x H = Co— + NOev.

at
(63)

Let

S= EXH+fIv. (64)

Then

V. S= H.VX E– EVXH+VP. v+ PV. v. (65)

On substituting for V XE, V XH, VP and V. v respec-

tively from (62), (63), (60), and (61) in (65) and noting

that v X13, v = O, it follows that

[

1
V.S=–; :H2+:E2+::z12+—— #

a%iYo 1

10

R=05

8 –

;_ : ;:L]

b
n

Km.

6 –

Km

4 –

2 –

1281

oial

0,~., , “,, ’;.., 8 “’’’; :.,
10 10’ 10’

Km, AND Krnp

Fig. 1—Dispersion curve for R = 0.5.
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The integration of (66) throughout the volume V en- 1
H.O = ~

s
I+(f, km(l)

closed by the surface A yields

s ~fi~~++f[;l~l’+ ;l~l’+~:ltl’A
1

+— IPI]2 w
a2m.V0

—_—
s

HJmdV. (67)
v

1
21.,0 = —

s
Tmo(fj krno)

2T

The term inside the square brackets in (67) gives the
. exp { ifx + iV’km02 – f’ I z ] } df. (73)

sum of the densities of magnetic, electric, kinetic, and

potential energies, and hence, the second term on the The result is

Jr

right side of (67) represents the rate of increase of the

total energy inside the volume V. The term on the right-

hand side of (67) is the rate of supply of energy by the

source. The requirement of energy balance immediately

shows that the first term on the left-hand side is the

rate of outward flow of energy through the area .4.

Hence the vector S represents the outward power flow

per unit area. In the case of harmonic time dependence,

the outward time-averaged power flow through unit

area is easily seen from (64) to be given by

S= Re~[EXH*+pv*]. (68)

In order to be able to speak of the power radiated

separately in the optical and the plasma lmodes, it is

necessary to show that the two modes are orthogonal.

This is, that

s
[E., X H.,*+ 4.,;,] dA = O (69)

A

where the integral is taken over a surface enclosing the

source. In order to establish (69), the following Fourier-

transformed expressions for EnP, H~O, P-P, and v~o are

substituted in the integral on the right-hand side of

(69) :

1
E .P=— s

Enw(t, Lw)
21T

Since the wave numbers k~o and k~P are always dif-

ferent, it follows that (74) is equal to zero and hence,

the orthogonality relation (69) is established.

If use is made of (52), (10), (11), (16), and (17), and

it is noted that the field components are independent

(75)

(76)

(77)

(78)

The total powers radiated by the line source in the

optical and plasma modes are given by

s

2T

Pmo Sno . fipdo
o

. Re Tp [ — Eo~oHti~o* + p~ozJp~o*] (79)

s

21r
Pm. = S,.p fipd$

o

. Re rp[ — E8~PH %P* + fw,pvP~P*]. (80)
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The substitution for H, and ~, respectively, from (50),

(51), and (46a) and (46b) in (76) and (77) gives the

expressions for E@ and v,. The insertion of the expres-

sions for Ee, HV, j, and VP in (79) and (80), respectively,

for the optical and plasma modes and the replacement

of the Hankel function by the first term in its asymptot-

ic expansion, leads to the following result for the power

radiated in the two modes:

Pmo

[

cl ~z &M). k~,’
P.(I = — —— — ———

(.0 e c CL12—OJ12km{? — k,,2

— eoJoz
2

c~oxi>.k~o~kaz
+—

c(u ‘ – UB”) (km,’ – k.’)’ 1

Care must be exercised when the radiated power is

evaluated for the values Q = Q1 and Q = Q. The expres-

sions (81) and (82) are not used for this purpose. It is

shown below that no power is radiated for these two

values Q. It is easily shown with the help of (34), (13),

(14), (8), and (53) that

(Q’ – L?,’) (Q’ – Q,2)

1–6=(Q’ –1)(Q2--R1 )1)’
(83)

where the expressions for f112 and Qs2 are given respec-

tively in (57) and (58). For fl==QI and Q=Qs, (1 –@

is seen to be zero from (83), and as a consequence, the

expression (37) for A is no longer valid. With the help

of (29), (30), (12)–(14), (8), and (53), it is seen that

2 [Q’ – Q,’][w – w]
ka, = >

[Q’ =1] –
(84)

az

2 [w – Q12][w – w]
ke’ . % _———

[Q’- R’-l]–
(85)

c’

and

[Q’ – ‘J,’] [Q’ – Q,’] .
~= (86)

Q’[Q’ – R.’]

For the values of Q = Q, and Q = QI, from (84), (85), and

(86) it is seen that k~2 = k? = e = O. These values When

substituted in (27) and (28), immediately give

H,(I, z) = p(x, z) = o for Q = QI and Q,. (87)

Hence, no power is radiated for the values Q = Ql and

a=%

With the help of (8), (12)-(14), (29), (30), (34), (38)-

(41), (53), and (57)-(59) the expression for ~~o given in

(81) may be simplified to yield the following result:

P.Lo

[

Q’(n’ – Q,’) .R2W
—— + ‘—

= (w – W)(Q’ – W) (w – Q,’)(Q’ – Q,’)(Q” – 1)

{

N JV
.——

A’ – 1 + m=~j H

(88)

.a n d

10–’($2’ – 1)’
~~ = —. .

(Q2 – Q,’)(Q’ – Q,’)
(92)

The velocity ratio a/c is taken to be equal to 1(1–4. In

the range Q < Q < co, where the optical mode propa-

gates, the second term inside the square brackets of

(91) can be omitted and u is seen to be very large com-

pared to w. Hence, (89) and (90) may be approximated

as follows:

M=tt+lzL] –~=2u
2\ul

~ (Q2 – 1)(LP – Q,’)
—

(Q!’ – G’,’)(LP – Q,’)
(93)

~ 10-’($7– 1)
—

2(Q2 – Qz’) “
(94)

The results in (93) and (94) follow froln the fact that u

is positive in the range Q < Q < ~, as can be seen from

(91). From (93) and (94), lV is seen to be very much

smaller in comparison to M and hence, can be neglected

in (88). Therefore,

Q’(Q2 – Q22)

[

(Q2 – 1) 1 ~:
Pmo = — .—

(w – Q,2)(Q2 – Q3’) 2 Q? M 1
(w–fl,2)(CP–Q,’). 4Q’(Q’–w) “ (95)
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It is evident from (95) that ~~, is positive in the range

Q,< Q < cc and this ensures a net outward flow of power

from the source. Thus, the radiation condition is satis-

fied, and the choice of the branch-cuts used in the eval-

uation of the integral in (43) is justified. The power

~mo radiated in the modified optical mode maybe calcu-

lated from the expression (95) for the range !2, <0<10

and for different values of the parameter R. The results

are given in a graphical form in Fig. 4. It is seen from

the figure that power radiated in the modified optical

mode at given frequency becomes smaller as the applied

magnetic field is increased. Also, at a given external

magnetic field, the power in this mode rapidly increases

from zero as the frequency is increased from the cut-off

frequency Qs and reaches an asymptotic value which is

the same as when there is no external magnetic field.

o

0

0

Fm.

c

c

Fig. 4—Power in the modified optical mode
for different values of R.

In the same manner as (81), (82) may be simplified

to yield

Pm.

[

fl~(flz – L@ R2Q2

= (Q? – Q,’)(W – fl~ + ~– Qf)(w – Q,Z)(Q’ – 1)

{

M M
—

M–l+(M– l)’ }1

~ (Q’–1)M–1 2

[ 1 for Q > $21.
2 fi?~ N–M

(96)

Two cases may now be distinguished according to

whether u is positive or negative. For Q not in the neigh-

borhood Qz and u positive, (93) and (94) are valid and,

therefore, A’ can be neglected in comparison with M.

Hence, it follows from (90), (93) and (96) that

R’
P.v = forl<fl<fl, and Q,<Q< a. (97)

4f12(L?2 – L?,’)

It is seen from (91) that u is positive for the ranges

1 <Q <S22 and Q <Q < cc. From (97), it is obvious that

~~P is negative in the range 1 <Q <02 and positive in

the range Q3 <G!< cc. When Q is not in the neighborhood

of Q2 and when Z.L is negative, it is easily derived from

(93) and (94) that

1O-8(Q’ – 1)
M=–:=

2]1L] 2(Q’ – Q2’)
(98)

(w – 1)(!2’ – Q,’)
AT&_ 21 u]=

(Q’ – Q,’)(L?’ – !232) “
(99)

From (98) and (99), it is seen that M is very small

compared to IV and 1 and, therefore, it can be neglected

in (96) with the following result:

Q’(Q’ – w)

[

(W-1)1 2
Pm, ~

(W – Q,2) (W – W) -1 (loo)
2Q2 - AT “

The substitution of the expression for N

(100) yields

From (91), it is obvious that u is negative

QI<Q< 1 and Q <Q<Qs. It follows from (101) that

~~fl is positive for the range 01< Q <1 and negative for

Q,< Q< Q,.

When Q is in the near neighborhood of Qz, the follow-

ing valid approximation for u can be made from (91) :

from (99) in

< !&. (101)

in the ranges

1O-8(Q2 – 1)2 w

?1 =

2(LV – Q,2)(Q2 – Q,’) = I “

(102)

Since u<<l, it follows from (89) and (90) that

1O-4(Q2 – 1)
il!f=-lv~d-w=

[(Q’ – Q,’)(Q,’ – fp)]n “ (103)

It is seen that AT, N<<l, and hence, for Q in the near

neighborhood of Qz, (96) may be simplified to yield

–R21(j4

P.,p = (104)
8Q2[(fY – Q1Z)(Q3Z– Q2)]1/2 “

From (104), ~~. is seen to be negative even when Q is

near QZ. Thus, from (97), (101) and (104), ~~~ k posi-

tive for $21< Q <1 and Q < Q < cz and negative for

I<Q<Q.

Since ~~P is positive for the ranges fix < Q <1 and

Q <Q < co, the radiation condition k fulfilled and hence
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the choice of branch-cuts [see Fig. 5(a)] used in the

evacuation of the integral (44) is correct. But for

1 < Q < Qi, ~~p is negative and, therefore, the radiation

condition is not satisfied. In order to satisfy the radia-

tion condition even for 1 <Q <S?3, it is necessary to use

the branch-cuts as illustrated ill Fig. 5 (b). The new

choice of branch-cuts will lead tc) HO(2) in (5o) and (51)

instead of to Ho(l). A negative sign is introduced in

(82) as a result and ~~, turns out to be positive, en-

suring the fulfillment of the radiation condition.

The power radiated in the modified plasma mode

may be evaluated for values of Q ranging from fll to 10,

with the help of (97), (101), and (104) and the results

are plotted in Fig. 6. From the figure it is seen that as Q

increases from Q the power in the plasma mode rapidly

decreases. On the other hand, the power in the optical

mode rapidly increases and reachlss an asymptotic value.

For certain ranges of frequencies, the power in the

modified plasma mode is higher than that radiated by

the line source in free space. Ako, there is a peak at

Q = Q2 and from (104) it can easily be shown that this

peak has its maximum value when w/uP = u/w. = ~?.

With the introduction of dissipative effects in the

plasma, this peak is reduced in magnitude, but never-

theless, the possibility of obtaining more power from

the line source than in free space exists, and this ap-

pears to be significant.

In this investigation the motion of the ions has been

neglected in conlpal-ison with that of the electrons and

as a consequence, the interaction between the sound

waves and the plasma oscillations cannot be deter-

mined. This aspect of the problem is under investiga-

tion and will be the subject of a subsequent paper.

,.-<

Fig. 6—Power radiated in the modified plasma mode
for different values of

AYFEiN~IX

The following elegant method of

equations (18) and (19) has been

solving the coupled

pointed out to the

author by Prof. J. Shmoys of Polytechnic Institute of

Brooklyn, N. Y.

After the substitution of V’P from (“18) into (19) and

WHU from (19) into (18), it follows that

(1

(1

/5)V2Hu – ~ —– ‘2”’

‘ 0“1 ‘2(’ -3 P+-’’2H’

— ‘= J“6(I)6(Z) (105)——
cl

k.’(.oP2Bo
/3)V2p + ka’p + ——— Hu

lo~ — wp~

ic.wje CJD3Bn
—— — — ——— ~IId(X)~(Z) . (106)

~1 6J2 — cop~

The two equations (105) and (106) ran be written down

as a single equation for the vector

()

Hv

P
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in the following manner:

where

[M] =+;

‘2[TI+’M’[:1= ‘s] (107)

(108)

and

1

[s] = - Jod(t)cI(z) [1WP2B0 . (109)
(1 – /3)e,

u’ – a,’

Introduce the following transformation:

[7= ’4;:1
The substitution of (1 10) in (107) and the

plication by the inverse matrix [ T]–1 leads to

(110)

premulti-

V- *’,
[J [1

~ + [T]-’[M] [T] j: = [T]-l[S]. (111)

If the matrix [T] is chosen in such a way as to diag-

onalize [ M], the following two uncoupled wave equa-

tions are obtained:

Vf;:l+[’i:k:p2][l:]= ‘T]-l[S] “12)

where k~02 and k~P2, the eigenvalues of [M], are given

by the roots of the equation

(1 – ~)~’ – (ka’ + k,’)~ + k.2k.2 = O. (113)

From (113) it is clear that k~$ and k~p2 are respectively

the same as given in (38) and (39). The evaluation of

the inverse matrix [ T]–l yields the source term on the

left-hand side of (112). Since the source terms are delta

functions, the solutions are obviously Hankel functions.
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RadialOLine Coaxial Filters in the Microwave Region*

B. C. DE LOACH, JR. ~, MEMBER, IRE

Summary—Design tecludques and a simple empirical formula
for the design of band rejection radial-line coaxial filters are pre-
sented. The appropriateness of these filters for parametric work is
discussed and a particular structure employing these filters to pro-
vide a high performance harmonic filter structure for rectangular
waveguide is presented.

I. INTRODUCTION

SEVERAL requests for “further information” on

radial-line coaxial filters followed the presentation

of a paper-l at the 1961 International Solid State

Circuits Conference. This paper is a response to those

requests and is intended to provide a practical design

techniqtle for the realization of these filters.

The design of coaxial filters in the microwave region

above a few gigacycles has not received much attention

* Received TUIY 16, 1962: revised manuscript received September
26, 1962. “ “

f Bell Telephone Laboratories, Inc., Holmdel, N. J.
1 B. C. De Loach, Jr., “Waveguide parametric amplifiers, ” Digest

of Technical Papers, 1961 Internat’1. Solid-State Circuits Conf.,
Lewis Winner, New York, N. Y.

in the past due to the popularity of rectangular wave-

guide for use at these frequencies. Coaxial filters in this

frequency range have become increasingly important of

late, however, due in large part to the advent of multi-

ple frequency circuits employing coaxial lines (often in

conjunction with other types of waveguides) which

have come about through the application of solid-

state art to microwave problems. Parametric amplifiers

and frequency multipliers (or dividers) in particular

have stringent filtering requirements for which coaxial

filters of the type to be discussed in this paper seem

particularly appropriate.

In addition, harmonic band rejection filters in rec-

tangular waveguide structures are difficult to design for

very good fundamental frequency performance and

are often rather poor in their filtering response for one

or more of the several harmonic waveguide modes that

may be present. The problems associated with these

filters can be avoided by accomplishing the filtering in a

coaxial line and employing two rectangular wave-guide-

to-coaxial line transducers.


